Organic Defective Clique Generation Algorithm for solving
Maximum s-defective Clique Problem

Sohom Chatterjee, UIN: 729007535
Soham Das, UIN: 130004757

May 2020

1 Introduction

The study of complete subgraphs has been an inte-
gral part of mathematics even before the ”clique”
terminology had been introduced. A clique in a
graph is a set of pairwise adjacent vertices, that
is, the graph induced by a clique is complete with
all possible edges [1]. The term ”clique” and the
problem of formulating clique-detection algorithms
both dawn from the social sciences, where complete
subgraphs are used to model social cliques, groups
of people who all know each other. The term first
arose in [2] where graphs were used to model social
networks, and adapted the social science terminol-
ogy to graph theory. This problem has tremendous
applications in chemistry, bioinformatics, etc.

However, the constraint enforcing the existence
of all possible edges between a group of vertices
seems to be overly restrictive and impractical,
mainly because real-life subgroups may not be per-
fect and could be missing a few edges. The need
for relaxations of the clique model also arises in
practice when dealing with massive data sets which
are error prone, resulting in false or missing edges.
Many clique relaxation models have been intro-
duced in the literature over time, namely, the s-
clique model [3], the sociometric clique of diameter
s |4], the s-club [5], the s plex [6], etc. A thorough
analysis of different clique relaxation concepts and
their mathematical programming formulations have
been provided in [7].

In this work, we will focus on the s-defective
clique model that was introduced in the context of
analysis of protein interaction networks [8]. The
defective clique problem can be formally stated as

follows,

The mazximum s-defective clique prob-
lem: Given a simple undirected graph G = (V, E),
an s-defective clique is a maximum-cardinality sub-
set of vertices that induces a subgraph that has all
but at most s edges.

2 IP Formulation

The integer programming formulation for the s-
defective clique problem can be written as:

Let | V |=n. Let z; be a binary variable, which
assumes value 1 if vertex 7 is a part of the defective
clique S, and 0 otherwise. Our decision variables
are these x;, which decide which vertices are going
to be a part of the defective clique, where ¢ € V.
Let z;; be 1 if a pair of vertices ¢ and j are both part
of S, and 0 otherwise. Let s be the maximum num-
ber of defects we can allow in this clique. Hence,
the optimization problem is,

maximize le

i=1

D S

(i.)¢E

ZijZZEi—f-ZL‘j—l, Zij >0Ve,jeV
z; € {0,1} VieV

subject to

If (i,7) ¢ E, and z;; = 1, we are including a pair
of vertices that are not connected by an edge in our
desired subgraph S, which is a defect f or the clique.
Constraint 1 ensures that we can only tolerate at
most s such defects.

The idea of z;; being 1, only if both x; and z; are
included in the clique can be mathematically formu-

lated as z;; = x;x;, which however is a quadratic in
our decision variables. In order to linearize this, we
use the constraints 2 and 3. If both ¢ and j are a
part of the subgraph S, then the value of x; and
x; are both 1, and constraint 2 reduces to z;; > 1,
which makes constraint 3 redundant. Since we are
maximizing the number of vertices to be included in
the subgraph S, while also having an upper bound
for the sum of z;s, V (i,7) ¢ E in constraint 2,
this automatically restricts the corresponding z;;s
to not exceed 1.

Thus we can see that the above IP formulation
correctly represents the problem in question.

3 Theoretical Analysis

3.1 Proof for NP Hardness

The theorem proposed by Yannakakis in [9], is a
standard way of proving NP hardness of several
graph properties. It states that,

Theorem 3.1. The problem of finding a mazimum
cardinality subset of vertices that satisfies a given
property mw, which is non trivial, interesting and
hereditary on the induced subgraph is NP Hard.

Here, we need to define some properties.

Definition 1. We say that a property ™ of a sub-
set of vertices is hereditary in induced subgraphs if
C satisfies w implies that for any C” C C, C” also
satisfies .

Definition 2. A graph property m is non-trivial if
it 1s satisfied by C = {r} C V, but not satisfied by
every subset of vertices for every graph.

Definition 3. A graph property m is interesting if
there are arbitrarily large graphs having this prop-
erty.

For the s-defective clique problem, the property
of interest m can be s-defectiveness, and hence we
can restate the problem as,

The maximum s-defective clique prob-
lem: Find the maximum cardinality of sub-
set of vertices that satisfies the property of s-
defectiveness, ie. it is a clique with at most s-
defects.

We can easily see that any induced subgraph
of an s-defective clique will also be an s-defective
clique, hence it is hereditary on induced subgraphs.
This property is also non-trivial, as we can con-
struct graphs which do not satisfy this property for
a certain s. This property is also found in arbitrar-
ily large graphs. Hence this property conforms to
the definition of .

Hence this is an NP-Hard Problem.

3.2 Polynomial Time Solvable

Cases

There are certain network topologies under which
the maximum s-defective problem is polynomial
time solvable. Shirokikh in his dissertation, [10]
mentions that,

Theorem 3.2. For a fized nonnegative integer
s, the mazrimum s-defective clique problem s
polynomial-time solvable on planar graphs.

3.3 Bounds on Optimal Solution

Let the clique number of the graph G = (V| E),
that is the cardinality of the maximum clique of the
graph be represented as wg. Since any s-defective
clique is a clique relaxation, a lower bound on the
maximum s-defective clique would be wg.

In the best case, an s-defective clique can be
grown from a max-clique by adding s nodes such
that each contribute only one defect. Hence, an
upper bound on the maximum s-defective clique
can be given as wg + s, where s is the number of
allowable defects.

The heuristic processes described in the next
section also provide tighter lower bounds than the
clique number of the graph.

4 Algorithmic Solutions

In this project we propose a few heuristic solutions
for generating feasible s-defective cliques as well
as an exact approach to generate the maximum s-
defective clique.

The basic approach used in these algorithms is
to add a certain number of edges using some heuris-
tic and then solving the maximum-clique problem
on this new graph to find an s-defective clique for
the original graph.

4.1 Random Edge Addition

Here we add s edges to our graph randomly. We use
an Integer Programming formulation for the max-
imum clique problem in Gurobi for the resulting
graph. This heuristic generates feasible s-defective
cliques and provides a valid lower bound. It is also
computationally comparable to merely solving the
maximum clique problem.

4.2 Degree-Rank Edge Addition

Since, intuitively we feel that an almost clique
would have a lot of high degree nodes where some
are not connected to each other, it would make
sense to rank the nodes of the graph in terms of
their degree and keep adding the allowable number
of defects (edges) in this hierarchy.

This leads us to our second Heuristic, where we
sort the nodes and then we find pairs of highest or-
der nodes, that are not connected in the original
graph and add edges between them in this order.

4.3 Connection-Potential Edge Ad-
dition
We define the term Connection Potential as,

Definition 4. Given a maximal cligue Cin a graph
G=(V,E), and a node i which does not belong to
that clique, the connection potential, C, of that node
i to the mazximal clique C is given by,

1

’
E 'Tij

jec

OP@J O) =

where z;; = 1,V(i,j) ¢ E

Essentially this represents the affinity of the
node ¢ to be included in the maximal clique. The
connection potential of a node which only lacks one
edge to be included in the maximal clique will have
Cp = 1. If more edges are required, the denomi-
nator will go up and the connection potential will
decrease. Thus ideally, C,, € (0, 1]

We will use this connection potential to identify
the best nodes to add to the maximum clique in
the graph and thereby grow it into an s-defective
clique.

This idea can also be extended to provide an
exact approach to finding the maximum s-defective

clique by adding nodes to all maximal cliques in
the graph, identified using the classical CLIQUES
algorithm, discussed in [11].

4.4 Organic Defective Clique Gen-
eration Algorithm

This algorithm is inspired by the CLIQUES algo-
rithm to find all maximum cliques as introduced
in [12]. Consider a graph G = (V,E). First we
introduce a global variable () that comprises of a
set of vertices that constitute a complete subgraph.
We have a global variable deft that will store the
list of all the defective cliques we find paired with
their unrealized defect. We also have a global vari-
able CQ contain the list of all maximal cliques we
find using this algorithm.

The algorithm begins by letting () be an empty set
and expands () step-by-step using a recursive pro-
cedure DFS to V and its succeeding induced sub-
graphs to search for complete subgraphs of larger
cardinality, till a maximal subgraph is obtained. At
this point the value of) is appended to the list of
cliques, CQ.

Once a clique is formed, the global variable deft
will store an imprint of the clique and the number
of unrealized defects which is s at this point. Func-
tion calls return and we move to the earlier stage of
the recursion to find a suitable element that we can
add to the maximal clique already generated. This
procedure is described in Algorithm 1. We keep
adding elements to the clique till its number of un-
realized defects become 0 or we run out of suitable
elements.

5 Computational Results

We have implemented the algorithms in Python
3.7, on a system of 8GB RAM, Intel(R) Core(TM)
i5-4210U CPU @1.70GHz. We have run our sim-
ulations on ER graphs generated with connection
probability, p= 0.4. For a chosen cardinailty of the
ER graph and a chosen number of allowable defects,
we run all the algorithms at our disposal along with
the standard branch and bound maximum clique al-
gorithm using Gurobi 9.0. All our 2-stage heuristic
algorithms depend on this integer programming for-
mulation for the maximum clique problem solved in
Gurobi for the second stage implementation.

Algorithm 1 ODCLIQUES(G)

1: procedure ODCLIQUES(G)
2: Q<+ {} > constitutes a clique
3 deft < || > set of all defective cliques
4: > number of allowable defects
5: CQ <« | > set of all cliques
6 * V are the nodes of G\ *
7: DFS(G,V.,V)
8: procedure DFS(G,SUBG,CAND)
9 if SUBG == ¢ then
10: Append (Q, s) to deft
11:
12: u = a vertex in SUBG that maximizes |[CAND N N (u)
13: n < N(u)
14: for ele in CAND-n do
15: Q +— QU {ele}
16: Qcopy — Q
17: SUBG, < SUBG N N(ele)
18: CAND, + CAND N N(ele)
19: DFS(G,SUBG,,CAND,)
20: CAND < CAND — {ele}
21: for i in N(ele) do
22: key = the defective clique set of max cardinality in deft of which Qop, is a subset
23: defects = the number of remaining defects in the key
24: * deft is a list that contains the defective cliques and their unrealized defects*
25: for ele2 in N(ele)-key do
26: req = # of defects realized by adding ele2 to clique key
27: if req < defects then
28: Qeopy < Qeopy U {ele}
29: defects = defects - req
30: Append the tuple (Qcopy, defects) to deft
31: key < key U {ele}
32: if len(Q) > 1 then
33: Append Q to CQ
34: Q <+ Q —{ele}
Graph ‘ Gurobi TP ‘ OD Cliques ‘ Degree-Rank ‘ Random ‘ C, ‘ Max Clique Gurobi ‘
V] =20, s=3 6.2 6.0 5.1 48 |56 4.6
|V| =30, s=5 7.7 7.5 6.0 5.5 6.9 5.4
|V | =40, s=7 9.1 8.4 6.5 5.9 8.0 5.9
|V | =50, s=9 10.0 9.2 6.9 6.2 8.5 6.1
|V| =100, s=5 10.0 10.0 8.0 8.0 9.0 8.0

Table 1: Average Max Cardinality of Defective Cliques

’ Graph ‘ Gurobi IP ‘ OD Cliques ‘ Degree-Rank ‘ Random ‘ C, ‘ Max Clique Gurobi ‘
|V | =20, s=3 0.1062 0.0855 0.0078 0.0047 | 0.0109 0.0031
V| =30, s=5 0.7703 0.6500 0.0141 0.0078 | 0.0203 0.0141
|V| =40, s=7 5.0078 3.3559 0.0266 0.0266 | 0.0640 0.0422
|V | =50, s=9 25.5218 12.6675 0.0812 0.1187 | 0.1422 0.1109
V| =100, s=5 | 412.3594 1186.4055 1.1250 1.0469 | 2.2188 1.3281

Table 2: Average CPU Time for Finding Defective Cliques in sec
Cardinalitynode20d3 Cardinalitynode30d5
—— GurobilP 8.0 —— GurohilP
DefectiveCLIQUE /_/’\/_\' DefactiveCLIQUE
—— Heuristicl) 51/ / \ —— Heuristicl)
—— Heuristich | \ % — HeuristicR
HeuristicCP 70 / \5 ' HeuristicCP
- —— MaxCLIQUE » 65 - | | — MaxCLIQUE
‘*
§] G ss
5.0
45
40
0 2 a 6 8 10 2 14 0 2 4 6 B 10 12 14
k k
Cardinalitynode40d7 Cardinalitynode50d9
’ \/\E T e 10.0 —— GurobilP
DefectiveCLIQUE DefactiveCLIQUE
= HeuristicD 95 —— HeuristicD
9 " | = Heuristich —— Houristich.
HeuristicCP 9.0 HeuristicCP
/ — MaxCLIQUE —— MaxCLIQUE
% / % BO
g7 S 75
6] 7.0
65
5 6.0

0 2 4 & B 10 12 14

o 2 4 6 B 10 12 14
k

Figure 1: Cardinality of Defective Cliques for ER Graph

6 Analysis of Results

6.1 Quality of Solution Obtained

We notice from the results in the previous section
that the proposed ODCliques algorithm performs
very well and produces results almost similar to the
s-defective IP formulation done in Gurobi. We also
see that the C), heuristic algorithm also performes
relatively well among the other two heuristic algo-
rithms, with Degree-Rank outperforming Random.
All of them produce defective cliques of equal or
higher cardinality than the maximum clique, hence
validating that they all produce feasible solutions.

6.2 Computation Time Comparison

We notice from the results that the proposed OD-
Cliques algorithms performs better on average than
the s-defective IP Forumulation in Gurobi, while
generating results of similar quality. However the
computation time used by the C, heuristic, is ex-
tremely low in comparison with these two and dif-
ference becomes more stark as the number of nodes
of the graph G rises. This heuristic provides a so-
lution of very good quality at a very cheap cost.

6.3 Scope for Improvement

We noticed certain further modifications that may
be implemented in our algorithm to make it more

COMPtimenode20d3
= GurohilP
0.30 DefectiveCLIQUE
== HeurizticD
0.25 —— Heuristich
HewristicCP
020 = MaxCLIQUE
E .
Zoo1s
S
010 S
0.05
0.00 == e
0 2 4 3 B 10 12 14
k
COMPtimenoded0d7
8 = (urohilP
Defective CLIQUE
= HeuristicD
= Heuristich.
6 HeuristicCP
= MaxCLIQUE
£ A\
=
3 4
S %
2
]
0 2 4 6 8 10 12 14

k

COMPtimenode30d5

12 — GurobilP
DefectiveCLIQUE
= HeuristicD
10 —— Heuristich
HeuristicCP
0.8 — MaxCLIQUE
S
=
0:. 06
L=
0.4
02
0.0 .'E:
2 4 B il 10 1z 14
k
COMPtimenode50d9
= GurobilP
40 DefectiveCLIQUE
= HeuristicD
— HewristicR
0 HeuristicCP
MaxCLIQUE
u
£
= 20
U
10
o
2 4 B 8 10 12 14

k

Figure 2: CPU Times of Max Defective Clique Algorithms

efficient as well as generate more possibilities of
identifying higher cardinality defective cliques.

e We can further prune several branches of the

DEFS tree in order to prevent useless computa-
tion. For instance, while considering growing
cliques of size wg — s where wg is the size
of the maximum clique of the graph, G, we
see that it can only outperform the maximum
clique if every node only accounts for one de-
fect. Hence, if we find any node addition can-
didate which adds more than one defect, we
can immediately stop continuing the DF'S in
that direction.

While iterating over the set CAND-n, the
elements of this set are not sorted according
to their highest degree in the induced sub-
graph. This sorting will ensure that those
nodes which contribute minimum defects to
the already existing clique or defective clique
are selected first. This can also help us prune
the DF'S tree since if adding an earlier node in
this set cannot result in a better clique than
one already achieved, we can stop the search
in that direction.

e While selecting the first node of the DFS,

7

we are only considering the neighbors of it
as candidates for forming the clique as well
as prospective s-defective cliques. However,
there might be some nodes which are not
connected to the first node of the DFS, but
very well connected to its neighbors, owing to
which it has an opportunity to be a part of
the defective clique, if there are defects left to
be filled at the end of the DFS. But the initial
pruning will prevent those nodes from being
part of the defective clique. This is a prospec-
tive modification scope for our algorithm.

Conclusions

Here we see that the cardinality of the maximum
s-defective clique provided by the ODCLIQUES al-
gorithm is in many instances equal to that provided
by the commercial solver Gurobi 9.0. Our algo-
rithm by design offers the advantage that it lists
a set of defective cliques and we can leverage that
information to easily combine elements of defective
cliques of the highest sizes to create an even larger

defective clique in a post-processing stage.

7.1 Contribution of Team Members

We have both contributed in develop and imple-
ment the algorithm and taken turns in the debug-
ging procedure.

References

1]

Balabhaskar Balasundaram, Sergiy Butenko,
and Illya V Hicks. Clique relaxations in so-
cial network analysis: The maximum k-plex
problem. Operations Research, 59(1):133-142,
2011.

R Duncan Luce and Albert D Perry. A method
of matrix analysis of group structure. Psy-
chometrika, 14(2):95-116, 1949.

R Duncan Luce. Connectivity and generalized
cliques in sociometric group structure. Psy-
chometrika, 15(2):169-190, 1950.

Richard D Alba. A graph-theoretic definition
of a sociometric clique. Journal of Mathemat-
ical Sociology, 3(1):113-126, 1973.

Robert J Mokken et al. Cliques, clubs and
clans. Quality & Quantity, 13(2):161-173,
1979.

Stephen B Seidman and Brian L Foster. A
graph-theoretic generalization of the clique

[10]

[11]

[12]

concept. Journal of Mathematical sociology,
6(1):139-154, 1978.

Jeffrey Pattillo, Nataly Youssef, and Sergiy
Butenko. On clique relaxation models in net-
work analysis. Furopean Journal of Opera-
tional Research, 226(1):9-18, 2013.

Haiyuan Yu, Alberto Paccanaro, Valery Tri-
fonov, and Mark Gerstein. Predicting inter-
actions in protein networks by completing de-
fective cliques. Bioinformatics, 22(7):823-829,
2006.

Mihalis Yannakakis. Node-and edge-deletion
np-complete problems. In Proceedings of the
tenth annual ACM symposium on Theory of
computing, pages 253-264, 1978.

Oleg A Shirokikh. Degree-based Clique Relax-
ations: Theoretical Bounds, Computational Is-

sues, and Applications. PhD thesis, University
of Florida, 2013.

Etsuji Tomita, Akira Tanaka, and Haruhisa
Takahashi. The worst-case time complexity
for generating all maximal cliques and com-
putational experiments. Theoretical computer
science, 363(1):28-42, 2006.

Coen Bron and Joep Kerbosch. Algorithm
457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575-577,
1973.

	Introduction
	IP Formulation
	Theoretical Analysis
	Proof for NP Hardness
	Polynomial Time Solvable Cases
	Bounds on Optimal Solution

	Algorithmic Solutions
	Random Edge Addition
	Degree-Rank Edge Addition
	Connection-Potential Edge Addition
	Organic Defective Clique Generation Algorithm

	Computational Results
	Analysis of Results
	Quality of Solution Obtained
	Computation Time Comparison
	Scope for Improvement

	Conclusions
	Contribution of Team Members

