
Analysis of Misinformation Containment Models in Social
Networks

Sohom Chatterjee, UIN: 729007535
Rohit Dube, UIN: 930001592

May 2020

1 Scope of Study

Due to the explosion in the use of the internet over the past few years there has been a huge growth
in the multitude of the interaction through which people meet, share and spread the ideas. There are
models used in the domain of epidemiology which mimic the spread of a disease by direct person-to-
person contact [1]. Some notable ones which are used to model social network rumor spreading are the
SIS [2] and SIR [3] models. An improved version of SIS model is used to study the person-to-person
transfer of information within an online social network.

In this study, we evaluate and simulate rumor-spreading models and check the strategies that can be
employed effectively to contain the spread of such rumors. A detailed study of an improved SIS rumor
spreading model [4] in the dynamically growing online Social Network is made. It considers the changing
levels of user engagement and the rate at which users enter or leave the social network. The study of
this improved SIS model in a dynamically growing social network setting has been primarily conducted
by Dong and Huang [4]. Classic SIS model is based on a static system, while in reality social networks
are a dynamic system where users keep registering and leaving continuously. Thus the impact of these
dynamics should be considered within the model and the influence of the user activity should be taken
into account.

The rumor diffusion process in such online social network (SN) is here represented by a stochastic
system model where in every time step a rumor spreading user tries to pass on the information that they
possess to the uninformed user. The nodes in the graph represent such users and the edges represent
connection between them. Our network consists of susceptible (healthy) and infected users and there
stance might change at each time step due to the infection and recovery process. We have tried to mimic
the setting of the social networks like Facebook and Twitter.

2 Our Contribution: Anti-Rumor User Introduction

A rumor is usually recognized after the certain portion of population is infected with it. Thus the
efforts to contain rumor starts only after some users are infected.The strategy is to reduce such spread
of misinformation by introducing positive information nodes which are immune to the rumor diffusion
process described by the improved SIS model. These users will never change their anti-rumor opinion.
Once they pass on this anti-rumor information to other users, even they will be immune to rumors.
This diffusion process and the introduction of positive information nodes is modeled on a dynamically
growing graph which closely represents the real SN process. Convergence is reached when there is no
infected node left in the system.

Since there is a cost associated with the introduction of the users in the social network responsible
to spread positive information, a cap or an upper limit of such users is maintained. We investigate a few

1

common strategies behind selection of these initial set of anti-rumor nodes, as well as propose a new and
better strategy for the same, that reduces the total convergence time of the rumor-spreading dynamics.
Two common selection procedures for the anti-rumor nodes are,

• Random Selection

• Max Degree Node Selection

A comparative study is made between these models for introduction of positive information nodes and
the one proposed to check which reduces the rumor in SN in minimum time steps.

3 Data Set Description

We have taken a network data set from the DIMACS Facebook Networks Repository. In this network
the nodes represent users and an edge between two nodes represent a friendship relation between the
corresponding users. There are 962 nodes (users) and 18812 edges (friendship ties) in this network. The
network is unweighted and undirected.

Figure 1: Facebook Friendship Network

As shown in Fig. 2, we generate the degree distribution of our network using Gephi software. We
see that the average degree of our network is 39.11.

As is commonly seen in social networks and as is evident from the degree distribution, our network
has a scale free structure or a power law degree distribution.

Figure 2: Degree Distribution of Facebook Friendship Network

We can also get an idea about the topology of our network using other parameters. Since this is a
social network another parameter of interest is the clustering coefficient which is shown in Fig. 3. We

2

see that that the average clustering coefficient is 0.330 which is not too high.

Figure 3: Clustering Coefficient Distribution of Facebook Friendship Network

The Eigenvector Centrality is a centrality measure that assigns the importance of a node to the
importance of other nodes to which it is connected. Fig.4 shows the Eigenvector centrality distribution
of our network.

Figure 4: Eigenvector Centrality Distribution of Facebook Friendship Network

The above parameters give us an insight on the topological characteristics of our network. This
data will be used to construct our dynamically growing scale-free network and subsequently the rumor
evolution map.

4 Model

In the setting of the improved SIS model discussed in [4] we have considered the network node into two
categories, namely health nodes S which is the number of users who are not under any influence of the
rumor or misinformation, while the transmission nodes I are those users who are under the influence of
the rumor and have the ability to spread it to the health nodes, so are involved in the propagation of
the message. These two types, S(t) and I(t) form the entire population of the social network N(t) and
the individuals can contract disease only from their immediate neighbors, where the t refers to the time
step. The users within the social network are thus healthy(susceptible), xi(t) = 0 or infected, xi(t) = 1.
We normalize these variables and thus take the proportion of S and T in the total population N .

Thus, N(t) = S(t) + I(t) and 0 < S(t), I(t) < 1.
Consider b as the net growth rate of the network, β as the infection rate at which the rumor spreads

from healthy nodes to the healthy nodes and σ as the cure rate at which the infected nodes recover to
being a healthy node.

We expand this network using the algorithm proposed by Barabasi and Laszlo [5], which conserves
the scale-free properties of the network. Essentially a new node which is added has the probability of

3

being connected to an existing node i by the probability p(i) = degree(i)∑
j∈V degree(j)

, where V is the set of nodes

in the network.
Initially we infect only one node with our rumor message. Since the average degree of the network is

39.11, we choose a node with degree 40 as the first node with rumor.
After this, we update the nodes or propagate the rumor based on the ideas of the SIS model. Because

the infected nodes would pass on rumor message to the healthy nodes during their interaction at some
probability, and the infected nodes also may recover from the influence of rumor message at some time
rate, we have the following propagation rule,

S + I
β−→ 2I, I

σ−→ S.

After a certain portion of population is infected, anti rumor users are activated in the network. These
anti rumors node are a part of S for which the probability β is always zero i.e, they will always remain
healthy and these nodes will spread the positive information with the rate γ. Since activating these nodes
initially would be costly, we assign ourselves a budget which is the number of anti-rumor nodes we can
initially activate. Let this budget be D. Having this constant budget, we wish to check which strategy
of selection of these nodes lead to the fastest convergence and removal of rumor from the network.

Apart from the usual strategies to select anti-rumor nodes, which is selecting the nodes from healthy
nodes randomly, and selecting the high degree nodes, we find a fundamental issue in these strategies. In
both these cases, there is a possibility of the selected nodes being connected to each other. In this case,
we are losing out on possible spread of the anti-rumor information. So it would be beneficial to us if
none of these initially selected nodes are connected to each other. Using this logic, we propose a third
strategy for initial node selection.

4.1 Independent Set Maximum Degree (ISMD) Strategy

Since we would be benefited by selection of high degree nodes which are not connected to each other,
we select the initial anti-rumor nodes using a two step procedure.

First, we select the set of candidate users to turn into anti-rumor nodes. They are the set of healthy
users at that point of time when the ratio of infected people have crossed a certain threshold.

On the induced subgraph of this candidate set of nodes, we solve the maximum independent set
problem.
The maximum independent set problem can be formally stated as follows,

The maximum independent set problem : Given a simple undirected graph G = (V,E), a max-
imum independent set is a maximum-cardinality subset of vertices which are pairwise independent, that
is, no two nodes share any edges between them.

We solve this maximum independent set problem using the commercial solver Gurobi 9.0 using an
Integer Programming Formulation. The integer programming formulation for the problem can be written
as:

Let | V |= n. Let xi be a binary variable, which assumes value 1 if vertex i is a part of the independent
S, and 0 otherwise. Our decision variables are these xi, which decide which vertices are going to be a
part of the independent set, where i ∈ V . Hence, the optimization problem is,

maximize
n∑
i=1

xi

subject to xu + xv ≤ 1 ∀(u, v) ∈ E
xi ∈ {0, 1} ∀i ∈ V

4

This will give us a set of nodes that are possible to be converted into anti-rumor nodes, and are not
connected to each other.

Next we sort these nodes according to their degree and select the top few nodes, as per our budget.
This will ensure maximum utilization of the edges and maximum anti-rumor spread from these initial
nodes.

A comparison is made between the models with no anti rumor nodes and these three models.
Our convergence criteria for this model is when all the nodes in this model are completely healthy

and there is no chance of further propagation of infection, ie. S = 1 and I = 0.

5 Simulation

The following parameter values were used throughout in the analysis.

Parameters Values

birthrate, b 0.3
infection rate, β 0.35
recovery rate, σ 0.2

anti rumor spread rate, γ 0.1
Budget of anti rumor nodes, D 10

Table 1: Parameter Values for model

5.1 With Zero Anti Rumor nodes

In this model we do not introduce any anti rumor nodes and the recovery is based entirely on the improved
SIS model [4]. Based on our algorithm, we add new nodes and edges to a simple Facebook network with
962 nodes using the Networkx library, and construct an online social network with changing number of
nodes.

Fig. 5 shows the time versus Infection proportion curve for the rumor spreading in the Facebook
network with β = 0.35. From Fig. 5 we can see that, in Facebook network, the trend change of the
infection rates match with the simulations done in [4]. The first peak of the curve of the infection node
density is around t = 20.

Figure 5: Infection Node Proportion for Dynamically Growing Network, β=0.35

In order to understand the impact of this infection rate on rumor-propagation we plot infection
proportion plots for varying infection rates. Fig. 6 shows the curves for 3 different values of β. Lowering
the infection rate leads to a smaller peak and faster convergence. All of these simulations are completely
consistent with previously established results.

5

Figure 6: Infection Node Proportion for Varying Infection Rates

5.2 Anti Rumor nodes introduced Randomly

Introdcution of Anti-Rumor nodes drastically changed the rumor growth dynamics. From Fig. 7, we see
that for the same infection rate 0.35, the curve converges in 36 time steps as compared to 175 time steps
required in the absence of Anti-Rumor nodes. This is considering an anti-rumor spread rate as low as
0.1. Thus we see that even the introduction of anti-rumor nodes randomly really affect the dynamics.

Figure 7: Introduction of Anti-Rumor Nodes, Random Selection

5.3 Anti Rumor nodes introduced at Maximum degree nodes

Next we use a different and more pragmatic choice of selecting anti-rumor nodes. At the point of
introduction of anti-rumor nodes, ie. when the infection proportion of the network crosses a particular
threshold, we extract the candidate set which is just the set of all healthy nodes at that point of time
and then we sort them according to their degree. We then select the highest number of nodes as per
our budget and select them to be the anti-rumor nodes. From Fig. 8, we see that for the same infection
rate 0.35 and the same anti-rumor spread rate 0.1, the Max Degree Selection clearly outperforms the
random selection. Convergence is reached much earlier, at around 25 time steps. Hence this seems to
be a better selection scheme.

5.4 Anti Rumor nodes introduced Using ISMD Algorithm

In the third instance we use the proposed algorithm ISMD. This has a clear advantage over the others
as there is no chance of the selected anti-rumor nodes to be connected to each other, which ensures
maximum utilization of their edges and thereby anti-rumor spreading. We can see from Fig. 9 that the
dynamics converge even faster and has a steeper descent rate than the previous two. This essentially
validates the better selection of intial nodes.

6

Figure 8: Introduction of Anti-Rumor Nodes, Random and Max Degree Selection

Figure 9: Introduction of Anti-Rumor Nodes, ISMD Selection

6 Conclusion

Fig. 10 provides a comparison between the 3 selection schemes and it can be clearly seen that the ISMD
Selection scheme dominates the other two consistently. The average convergence time is much lower
than the other two heuristics and the fall in rumor nodes is also steeper as can be seen from the curve.

Figure 10: Comparison of Selection Schemes

Our study here provides a comparison between three anti-rumor propagation models on a dynamically
growing social network, on top of the SIS rumor spread model. The results, especially for the proposed
ISMD scheme, provide interesting insights into how selection of appropriate nodes can drastically change
the convergence time of the network dynamics. Computing similar simulations on larger networks might
provide even better reductions in convergence time.

References

[1] Herbert W Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653, 2000.

7

[2] William Ogilvy Kermack and Anderson G McKendrick. Contributions to the mathematical theory
of epidemics. ii.—the problem of endemicity. Proceedings of the Royal Society of London. Series A,
containing papers of a mathematical and physical character, 138(834):55–83, 1932.

[3] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of
epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical
and physical character, 115(772):700–721, 1927.

[4] Suyalatu Dong and Yong-Chang Huang. A class of rumor spreading models with population dynam-
ics. Communications in Theoretical Physics, 70(6):795, 2018.

[5] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

Appendices

1 # -*- coding: utf -8 -*-

2 """

3 Created on April ’20’

4

5 @author: Sohom Chatterjee

6 """

7 #%% 1. IMPORTING LIBRARIES

8 import networkx as nx

9 import matplotlib.pyplot as plt

10 import numpy as np

11 from gurobipy import *

12 from scipy.io import mmread

13 import os , glob , re

14 import sys

15 import string

16 import math

17 import random

18 from tqdm import tqdm

19 from scipy import optimize

20 #%% 2. FILE READ (FACEBOOK NETWORK)

21 ##Read .mtx file as nxGraph

22 if __name__ == "__main__":

23 # load mtx files

24 path =’C:/ Users/Sohom/Desktop/ISEN 689/’

25 # os.path.dirname(os.path.realpath(__file__)) + ’/’’’

26 data_path = path + ’Data/’

27 # data_path = ’/Users/rw422/Documents/Twitter/AV Events Keywords Only (csv)’’

28

29 filename = ’socfb -Reed98 ’

30 # glob.glob(data_path + ’*.csv ’)[:1]’’

31

32 df = mmread(data_path + filename+’.mtx’)

33

34 Gr = nx.from_scipy_sparse_matrix(df)

35 #%% 3. GEPHI VISUALIZATION

36 if __name__ == "__main__":

37

38 gephi_path = path + ’Gephi/’

39

40 nx.write_gexf(Gr , gephi_path + filename + ’.gexf’)

41 #%% 4. FUNCTIONS

8

42

43 def ind_set(netw):

44 #G is the network

45 G=nx.complement(netw)

46 f=Model("Max Clique")

47 f.Params.OutputFlag =0

48 x=[]

49 for node in G.nodes():

50 x.append(f.addVar(name="x"+str(node), vtype=GRB.INTEGER))

51

52 # define objective

53 f.setObjective(sum(x),sense=GRB.MAXIMIZE)

54

55 #define constraints

56 G_prime=nx.complement(G)

57 for edge in G_prime.edges():

58 u=edge [0]

59 v=edge [1]

60 f.addConstr(x[u]+x[v]<=1)

61

62 # add valid inequalities

63

64 # optimise

65 f.optimize ()

66 l=[]

67 # general clique set

68 for v in f.getVars ():

69 if (v.x==1):

70 l.append(int(v.varName [1:len(v.varName)]))

71 return l

72

73 def avg_degree(G):

74 a=0

75 for node in G.nodes():

76 a = a+ G.degree[node]

77 return(a/len(G.nodes()))

78

79 def total_degree(G):

80 td=0

81 for node in G.nodes():

82 td = td + G.degree(node)

83 return td

84

85 def randflip ():

86 return np.random.uniform(low=0.0, high =1.0, size=None)

87

88 def expand_scale_free(G):

89 if randflip () <=birth_rate:

90 G.add_node(len(G.nodes ())) #ONLY CREATING NODE

91 for node in range(0,len(G.nodes) -1): #CREATING EDGES

92 if randflip () <=G.degree(node)/total_degree(G):

93 G.add_edge(node ,len(G.nodes ()) -1)

94

95 def assign_initial_node(G):

96 for node in G.nodes():

97 if G.degree[node] ==math.ceil(avg_degree(G)):

98 status[node]=1

99 break

100

101 def RandomSelect(cand):

102 nodes=random.sample(cand ,budget)

9

103 return nodes

104

105 def MaxDSelect(cand):

106 Graph=G.subgraph(cand)

107 a=sorted(Graph.degree , key=lambda x: x[1], reverse=True)

108 #return first "budget" elements

109 list =[]

110 for ele in a[0: budget]:

111 list.append(ele [0])

112 return list

113

114

115 def ISMaxDSelect(cand):

116 Grap=G.subgraph(cand)

117 i=0

118 tupl =[]

119 SGr=nx.Graph()

120 for node in Grap.nodes():

121 tupl.append ((node ,i))

122 SGr.add_node(i)

123 i=i+1

124 for edge in Grap.edges():

125 u=edge [0]

126 v=edge [1]

127 for c in tupl:

128 if u==c[0]:

129 u_pr=c[1]

130 break

131 for d in tupl:

132 if v==d[0]:

133 v_pr=d[1]

134 break

135 SGr.add_edge(u_pr ,v_pr)

136 ind= ind_set(SGr)

137 lst =[]

138 for z in ind:

139 for y in tupl:

140 if z==y[1]:

141 lst.append(y[0])

142 break

143 return MaxDSelect(lst)

144

145 def select_antirumor_nodes(cand):

146 # return RandomSelect(cand)

147 # return MaxDSelect(cand)

148 return ISMaxDSelect(cand)

149 #%% 5. CONSTANTS

150 birth_rate =0.3

151 inf_rate =0.38

152 rec_rate =0.2

153 ar_rate =0.1

154 budget =10

155 #%% 6. LISTS AND STARTING CONDITIONS

156 G=Gr.copy() #We keep a copy of the graph to keep the original undistorted

157

158 #Status List (1: Infected , 0: Healthy)

159 status= np.zeros((len(G.nodes()),), dtype=int)

160 #Select initial infected node=

161 assign_initial_node(G)

162 # #infect intial node

163 # status[assign_initial_node(G)]=1

10

164

165 #status [3]=1

166 #Lists

167 infC =[1] #Count of Total Infected People , per time stage

168 infR =[] #Ratio of Total Infected People , per time stage

169 susC=[len(G.nodes()) -1] #Count of Total Healthy People , per time stage

170 susR =[] #Ratio of Total Healthy People , per time stage

171 #%% 7. BASIC ALGORITHM

172 count =0

173 flag=0

174 inf=1

175 cand =[]

176 while inf >0 and count <=500:

177 ##Update system as per logic

178 InfectedList =[]

179 ARList =[]

180 #Update ill nodes

181 for edge in G.edges():

182 u=edge [0]

183 v=edge [1]

184 if status[u]==1 and status[v]==0 and randflip () <= inf_rate:

185 InfectedList.append(v)

186 for ele in range(0,len(InfectedList)):

187 status[InfectedList[ele]]=1

188

189 #Update healthy nodes

190 for ele in range(0,len(status)):

191 if status[ele]==1 and randflip () <=rec_rate:

192 status[ele]=0

193

194 #if infected ratio is some proportion of total population ,

195 if (inf/len(G.nodes())) >=0.4 and flag ==0:

196 cand =[]

197 for node in G.nodes():

198 if status[node]==0:

199 cand.append(node)

200 act_nodes=select_antirumor_nodes(cand)

201 for node in act_nodes:

202 status[node]=2

203 flag=1

204 #select some nodes using some logic as anti rumor nodes

205 #1. Randomly

206 #2. Max Degree

207 #3. greedyAlgorithm

208

209

210

211 #Update Anti Rumor Nodes

212 for edge in G.edges():

213 u=edge [0]

214 v=edge [1]

215 if status[u]==2 and randflip () <= ar_rate:

216 ARList.append(v)

217 for ele in range(0,len(ARList)):

218 status[ARList[ele]]=2

219

220 #Count and add to

221 inf=0

222 for ele in range(0,len(status)):

223 if status[ele]==1:

224 inf=inf+1

11

225 # i=sum(status)

226 infC.append(inf)

227 susC.append(len(G.nodes()) - inf)

228 infR.append(inf/len(G.nodes()))

229 # #Code to expand network (scale -free)

230 expand_scale_free(G)

231 # #status append for new node

232 status=np.append(status ,0)

233 count=count +1

234 print(’Iteration:’+ str(count))

235 print(’Infected Count:’ + str(inf))

236 print(’Infected Ratio:’ + str(inf/len(G.nodes ())))

237 print(’---’)

238 if inf ==0 or count ==500:

239 break

Listing 1: Simulation Code

12

